skip to main content


Search for: All records

Creators/Authors contains: "Giri, Sumanprava"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. RING finger and WD repeat domain-containing protein 3 (RFWD3) is an E3 ligase known to facilitate homologous recombination by removing replication protein A (RPA) and RAD51 from DNA damage sites. Further, RPA-mediated recruitment of RFWD3 to stalled replication forks is essential for interstrand cross-link repair. Here, we report that in unperturbed human cells, RFWD3 localizes at replication forks and associates with proliferating cell nuclear antigen (PCNA) via its PCNA-interacting protein (PIP) motif. PCNA association is critical for the stability of RFWD3 and for DNA replication. Cells lacking RFWD3 show slower fork progression, a prolonged S phase, and an increase in the loading of several replication-fork components on the chromatin. These findings all point to increased frequency of stalled forks in the absence of RFWD3. The S-phase defect is rescued by WT RFWD3, but not by the PIP mutant, suggesting that the interaction of RFWD3 with PCNA is critical for DNA replication. Finally, we observe reduced ubiquitination of RPA in cells lacking RFWD3. We conclude that the stabilization of RFWD3 by PCNA at the replication fork enables the polyubiquitination of RPA and its subsequent degradation for proper DNA replication.

     
    more » « less
  3. Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein, origin recognition complex-associated (ORCA/LRWD1), preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC (Origin Recognition Complex) and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affect replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure.

     
    more » « less